资源名称:深度学习:Java语言实现 中文PDF

第1章深度学习概述

1.1人工智能的变迁

1.1.1人工智能的定义

1.1.2人工智能曾经的辉煌

1.1.3机器学习的演化

1.1.4机器学习的局限性

1.2人与机器的区分因素

1.3人工智能与深度学习

1.4小结

第2章机器学习算法——为深度学习做准备

2.1入门

2.2机器学习中的训练需求

2.3监督学习和无监督学习

2.3.1支持向量机

2.3.2隐马尔可夫模型

2.3.3神经网络

2.3.4逻辑回归

2.3.5增强学习

2.4机器学习应用流程

2.5神经网络的理论和算法

2.5.1单层感知器

2.5.2逻辑回归

2.5.3多类逻辑回归

2.5.4多层感知器

2.6小结

第3章深度信念网络与栈式去噪自编码器

3.1神经网络的没落

3.2神经网络的复兴

3.2.1深度学习的进化——突破是什么

3.2.2预训练的深度学习

3.3深度学习算法

3.3.1限制玻尔兹曼机

3.3.2深度信念网络

3.3.3去噪自编码器

3.3.4栈式去噪自编码器

3.4小结

第4章dropout和卷积神经网络

4.1没有预训练的深度学习算法

4.2dropout

4.3卷积神经网络

4.3.1卷积

4.3.2池化

4.3.3公式和实现

4.4小结

第5章探索Java深度学习库——DL4J、ND4J以及其他

5.1从零实现与使用库/框架

5.2DL4J和 ND4J 的介绍

5.3使用 ND4J 实现

5.4使用DL4J实现

5.4.1设置

5.4.2构建

5.4.3CNNMnistExample.java/LenetMnistExample.java

5.4.4学习速率的优化

5.5小结

第6章实践应用——递归神经网络等

6.1深度学习热点

6.1.1图像识别

6.1.2自然语言处理

6.2深度学习的挑战

6.3最大化深度学习概率和能力的方法

6.3.1面向领域的方法

6.3.2面向分解的方法

6.3.3面向输出的方法

6.4小结

第7章其他重要的深度学习库

7.1Theano

7.2TensorFlow

7.3Caffe

7.4小结

第8章未来展望

8.1深度学习的爆炸新闻

8.2下一步的展望

8.3对深度学习有用的新闻资源

8.4小结

资源截图:

image.png

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源