资源名称:Python机器学习 完整pdf

第1章 赋予计算机学习数据的能力1
1.1构建智能机器将数据转化为知识1
1.2 机器学习的三种不同方法1
1.2.1 通过监督学习对未来事件进行预测2
1.2.2 通过强化学习解决交互式问题4
1.2.3 通过无监督学习发现数据本身潜在的结构4
1.2.4 基本术语及符号介绍5
1.3 构建机器学习系统的蓝图6
1.3.1 数据预处理6
1.3.2 选择预测模型类型并进行训练7
1.3.3 模型验证与使用未知数据进行预测8
1.4 Python在机器学习中的应用8
本章小结9
第2章 机器学习分类算法10
2.1 人造神经元—早期机器学习概览10
2.2 使用Python实现感知器学习算法13
2.3 自适应线性神经元及其学习的收敛性19
2.3.1 通过梯度下降最小化代价函数20
2.3.2 使用Python实现自适应线性神经元21
2.3.3 大规模机器学习与随机梯度下降25
本章小结29
第3章 使用scikit-learn实现机器学习分类算法30
3.1 分类算法的选择30
3.2 初涉scikit-learn的使用30
使用scikit-learn训练感知器31
3.3 逻辑斯谛回归中的类别概率34
3.3.1 初识逻辑斯谛回归与条件概率34
3.3.2 通过逻辑斯谛回归模型的代价函数获得权重36
3.3.3 使用scikit-learn训练逻辑斯谛回归模型37
3.3.4 通过正则化解决过拟合问题39
3.4 使用支持向量机最大化分类间隔41
3.4.1 对分类间隔最大化的直观认识41
3.4.2 使用松弛变量解决非线性可分问题42
3.4.3 使用scikit-learn实现SVM44
3.5 使用核SVM解决非线性问题44
3.6 决策树48
3.6.1 最大化信息增益—获知尽可能准确的结果49
3.6.2 构建决策树52
3.6.3 通过随机森林将弱分类器集成为强分类器53
3.7 惰性学习算法—k-近邻算法54
本章小结57
第4章 数据预处理—构建好的训练数据集58
4.1 缺失数据的处理58
4.1.1 将存在缺失值的特征或样本删除59
4.1.2 缺失数据填充60
4.1.3 理解scikit-learn预估器的API60
4.2 处理类别数据61
4.2.1 有序特征的映射61
4.2.2 类标的编码62
4.2.3 标称特征上的独热编码63
4.3 将数据集划分为训练数据集和测试数据集64
4.4 将特征的值缩放到相同的区间65
4.5 选择有意义的特征66
4.5.1 使用L1正则化满足数据稀疏化67
4.5.2 序列特征选择算法70
4.6 通过随机森林判定特征的重要性74
本章小结76
第5章 通过降维压缩数据77


资源截图:

image.png

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长QQ&VX:1754646538 提供付款信息为您处理。

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源。