• 文章介绍
  • 评价建议
  • 资源名称:深入浅出深度学习:原理剖析与python实践

    内容简介:

    《深入浅出深度学习:原理剖析与Python实践》介绍了深度学习相关的原理与应用,全书共分为三大部分,第一部分主要回顾了深度学习的发展历史,以及Theano的使用;第二部分详细讲解了与深度学习相关的基础知识,包括线性代数、概率论、概率图模型、机器学习和最优化算法;在第三部分中,针对若干核心的深度学习模型,如自编码器、受限玻尔兹曼机、递归神经网络和卷积神经网络等进行详细的原理分析与讲解,并针对不同的模型给出相应的具体应用。

    《深入浅出深度学习:原理剖析与Python实践》适合有一定高等数学、机器学习和Python编程基础的在校学生、高校研究者或在企业中从事深度学习的工程师使用,书中对模型的原理与难点进行了深入分析,在每一章的最后都提供了详细的参考文献,读者可以对相关的细节进行更深入的研究。最后,理论与实践相结合,《深入浅出深度学习:原理剖析与Python实践》针对常用的模型分别给出了相应的应用,读者也可以在Github中下载和查看《深入浅出深度学习:原理剖析与Python实践》的代码(https://github.com/innovation-cat/DeepLearningBook)。

    作者简介:

    黄安埠,2012年毕业于清华大学,获硕士学位,在校期间活跃于TopCoder等编程竞赛社区。现为腾讯基础研究高级工程师,研究领域包括个性化推荐、自然语言处理和大规模的相似度优化计算,特别是对于深度学习在推荐系统的应用有深入的研究,并申请了国内十余项相关专利。

    本书的配套代码,读者也可以在作者的Github主页中下载查看:

    https://github.com/innovation-cat/DeepLearningBook)

    资源目录:

    第1 部分 概要 1

    1 绪论 2

    1.1 人工智能、机器学习与深度学习的关系 3

    1.1.1 人工智能——机器推理 4

    1.1.2 机器学习——数据驱动的科学 5

    1.1.3 深度学习——大脑的仿真 8

    1.2 深度学习的发展历程 8

    1.3 深度学习技术概述 10

    1.3.1 从低层到高层的特征抽象 11

    1.3.2 让网络变得更深 13

    1.3.3 自动特征提取 14

    1.4 深度学习框架 15

    2 Theano 基础 19

    2.1 符号变量 20

    2.2 符号计算的抽象——符号计算图模型 23

    2.3 函数 26

    2.3.1 函数的定义 26

    2.3.2 Logistic回归 27

    2.3.3 函数的复制 29

    2.4 条件表达式 31

    2.5 循环 32

    2.6 共享变量 39

    2.7 配置 39

    2.7.1 通过THEANO_FLAGS配置 40

    2.7.2 通过. theanorc文件配置 41

    2.8 常用的Debug技巧 42

    2.9 小结 43

    第2 部分 数学与机器学习基础篇 45

    3 线性代数基础 46

    3.1 标量、向量、矩阵和张量 46

    3.2 矩阵初等变换 47

    3.3 线性相关与向量空间 48

    3.4 范数 49

    3.4.1 向量范数 49

    3.4.2 矩阵范数 53

    3.5 特殊的矩阵与向量 56

    3.6 特征值分解 57

    3.7 奇异值分解 58

    3.8 迹运算 60

    3.9 样例:主成分分析 61

    4 概率统计基础 64

    4.1 样本空间与随机变量 65

    4.2 概率分布与分布函数 65

    4.3 一维随机变量 66

    4.3.1 离散型随机变量和分布律 66

    4.3.2 连续型随机变量和概率密度函数 67

    4.4 多维随机变量 68

    4.4.1 离散型二维随机变量和联合分布律 69

    4.4.2 连续型二维随机变量和联合密度函数 69

    4.5 边缘分布 70

    4.6 条件分布与链式法则 71

    4.6.1 条件概率 71

    4.6.2 链式法则 73

    4.7 多维随机变量的独立性分析 73

    4.7.1 边缘独立 74

    4.7.2 条件独立 74

    4.8 数学期望、方差、协方差 75

    4.8.1 数学期望 75

    4.8.2 方差 76

    4.8.3 协方差 76

    4.8.4 协方差矩阵 78

    4.9 信息论基础 81

    4.9.1 信息熵 81

    4.9.2 条件熵 83

    4.9.3 互信息 84

    4.9.4 相对熵与交叉熵 84

    5 概率图模型 87

    5.1 生成模型与判别模型 89

    5.2 图论基础 90

    5.2.1 图的结构 90

    5.2.2 子图 91

    5.2.3 路径、迹、环与拓扑排序 92

    5.3 贝叶斯网络 95

    5.3.1 因子分解 96

    5.3.2 局部马尔科夫独立性断言 99

    5.3.3 I-Map与因子分解 100

    5.3.4 有效迹 103

    5.3.5 D-分离与全局马尔科夫独立性 108

    5.4 马尔科夫网络 108

    5.4.1 势函数因子与参数化表示 109

    5.4.2 马尔科夫独立性 111

    5.5 变量消除 114

    5.6 信念传播 116

    5.6.1 聚类图 116

    5.6.2 团树 120

    5.6.3 由变量消除构建团树 123

    5.7 MCMC采样原理 126

    5.7.1 随机采样 127

    5.7.2 随机过程与马尔科夫链 128

    5.7.3 MCMC采样 132

    5.7.4 Gibbs采样 134

    5.8 参数学习 137

    5.8.1 最大似然估计 137

    5.8.2 期望最大化算法 138

    5.9 小结 140

    6 机器学习基础 142

    6.1 线性模型 143

    6.1.1 线性回归 143

    6.1.2 Logistic回归 148

    6.1.3 广义的线性模型 150

    6.2 支持向量机 151

    6.2.1 最优间隔分类器 152

    6.2.2 对偶问题 155

    6.2.3 核函数 156

    6.3 朴素贝叶斯 160

    6.4 树模型 162

    6.4.1 特征选择 163

    6.4.2 剪枝策略 165

    6.5 聚类 166

    6.5.1 距离度量 167

    6.5.2 层次聚类 168

    6.5.3 K-means聚类 171

    6.5.4 谱聚类 172

    7 数值计算与最优化 177

    7.1 无约束极小值的最优化条件 177

    7.2 梯度下降 179

    7.2.1 传统更新策略 181

    7.2.2 动量更新策略 183

    7.2.3 改进的动量更新策略 184

    7.2.4 自适应梯度策略 187

    7.3 共轭梯度 188

    7.4 牛顿法 192

    7.5 拟牛顿法 194

    7.5.1 拟牛顿条件 194

    7.5.2 DFP算法 195

    7.5.3 BFGS算法 196

    7.5.4 L-BFGS算法 197

    7.6 约束最优化条件 200

    第3 部分 理论与应用篇 205

    8 前馈神经网络 206

    8.1 生物神经元结构 207

    8.2 人工神经元结构 208

    8.3 单层感知机 209

    8.4 多层感知机 212

    8.5 激活函数 217

    8.5.1 激活函数的作用 217

    8.5.2 常用的激活函数 219

    9 反向传播与梯度消失 225

    9.1 经验风险最小化 227

    9.2 梯度计算 228

    9.2.1 输出层梯度 228

    9.2.2 隐藏层梯度 230

    9.2.3 参数梯度 234

    9.3 反向传播 235

    9.4 深度学习训练的难点 237

    9.4.1 欠拟合——梯度消失 237

    9.4.2 过拟合 240

    10 自编码器及其相关模型 243

    10.1 自编码器 243

    10.2 降噪自编码器 245

    10.3 栈式自编码器 247

    10.4 稀疏编码器 250

    10.5 应用:cifar10图像分类 254

    11 玻尔兹曼机及其相关模型 258

    11.1 玻尔兹曼机 258

    11.2 能量模型 261

    11.2.1 能量函数 261

    11.2.2 从能量函数到势函数 262

    11.2.3 从势函数到概率分布 263

    11.3 推断 264

    11.3.1 边缘分布 265

    11.3.2 条件分布 267

    11.4 学习 270

    11.4.1 最大似然估计 271

    11.4.2 对比散度 274

    11.5 应用:个性化推荐 276

    11.5.1 个性化推荐概述 276

    11.5.2 个性化推荐架构与算法 279

    11.5.3 RBM与协同过滤 285

    12 递归神经网络 291

    12.1 Elman递归神经网络 292

    12.2 时间反向传播 295

    12.3 长短时记忆网络 299

    12.4 结构递归神经网络 302

    12.5 应用:语言模型 308

    12.5.1 N元统计模型 308

    12.5.2 基于LSTM 构建语言模型 312

    13 卷积神经网络 318

    13.1 卷积运算 319

    13.2 网络结构 320

    13.3 卷积层 324

    13.4 池化层 329

    13.5 应用:文本分类 333

    资源截图:

    100 - 深入浅出深度学习:原理剖析与python实践_Python教程_源雷技术空间

    1.本文部分内容转载自其它媒体,但并不代表本站赞同其观点和对其真实性负责。                                       2.若您需要商业运营或用于其他商业活动,请您购买正版授权并合法使用。                                          3.如果本站有侵犯、不妥之处的资源,请在网站最下方联系我们。将会第一时间解决!                                     4.本站所有内容均由互联网收集整理、网友上传,仅供大家参考、学习,不存在任何商业目的与商业用途。                            5.本站提供的所有资源仅供参考学习使用,版权归原著所有,禁止下载本站资源参与商业和非法行为,请在24小时之内自行删除!
    源雷技术空间 » 深入浅出深度学习:原理剖析与python实践_Python教程_源雷技术空间

    常见问题FAQ

    资源后续会更新吗?
    源雷技术空间支持永久更新!
    不会安装搭建怎么办?
    可以加入QQ交流群87323150,大神帮忙搭建~
    开通VIP 享更多特权,建议使用QQ登录